Anderson’s theorem for compact operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure Theorem for a -compact Operators

A contraction Tdefined on a complex Hilbert space is called Acompact if there exists a nonzero function/analytic in the open unit disc and continuous on the closed disc such that f( T) is a compact operator. In this paper, the factorization of / is used to obtain a structure theorem which describes the spectrum of T. Introduction. A bounded linear operator T on a complex Banach space X is calle...

متن کامل

Index Theorem for Equivariant Dirac Operators on Non-compact Manifolds

Let D be a (generalized) Dirac operator on a non-compact complete Riemannian manifold M acted on by a compact Lie group G. Let v : M → g = LieG be an equivariant map, such that the corresponding vector field on M does not vanish outside of a compact subset. These data define an element of K-theory of the transversal cotangent bundle to M . Hence, by embedding of M into a compact manifold, one c...

متن کامل

Compact Sets and Compact Operators

Proof. Properties 2 and 3 are left to the reader. For property 1, assume that S is an unbounded compact set. Since S is unbounded, we may select a sequence {vn}n=1 such that ‖vn‖ → 0 as n→∞. Since S is compact, this sequence will have a convergent subsequence, say {vk}k=1, which will still be unbounded. This sequence is Cauchy, so there is a positive integer K for which ‖v`− vm‖ ≤ 1/2 for all `...

متن کامل

Compact Operators

In these notes we provide an introduction to compact linear operators on Banach and Hilbert spaces. These operators behave very much like familiar finite dimensional matrices, without necessarily having finite rank. For more thorough treatments, see [RS, Y]. Definition 1 Let X and Y be Banach spaces. A linear operator C : X → Y is said to be compact if for each bounded sequence {xi}i∈IN ⊂ X , t...

متن کامل

Compact Operators

In these notes we provide an introduction to compact linear operators on Banach and Hilbert spaces. These operators behave very much like familiar finite dimensional matrices, without necessarily having finite rank. For more thorough treatments, see [RS, Y]. Definition 1 Let X and Y be Banach spaces. A linear operator C : X → Y is said to be compact if for each bounded sequence {xi}i∈IN ⊂ X , t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2006

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-06-08699-0